Intermediates with Copper-Carbon Bonds Formed by the Reaction of Aliphatic Free Radicals with a Copper-Peptide Complex in Aqueous Solutions

By WILLIAM A. MULAC and DAN MEYERSTEIN*† (Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439)

Summary The reactions of $\cdot CH_2CO_2^-$ and $\cdot CH_2CMe_2OH$ with a copper-peptide complex in neutral aqueous

solutions yield relatively long lived intermediates with copper-carbon σ bonds.

† Visiting scientist from the Chemistry Departments, Nuclear Research Center Negev and Ben Gurion University of the Negev, Beer-Sheva, Israel.

RECENTLY it was shown that Cu^{II} peptide complexes can be easily oxidized to Cu^{III} peptide complexes in aqueous solutions at physiological pH,¹ and it has also been shown that aliphatic free radicals react with Cu^{2+} ions in aqueous solutions according to the mechanism in equation (1).²

$$\cdot \operatorname{RH} + \operatorname{Cu}_{\operatorname{aq}}^{2+} \longrightarrow [\operatorname{Cu}^{111}-\operatorname{RH}]_{\operatorname{aq}} \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{Cu}_{\operatorname{aq}}^+ + \operatorname{RHOH}$$
 (or other oxidation products) (1)

The intermediates Cu^{III} -RH are relatively long lived for aliphatic radicals like $\cdot CH_2CO_2^-$, $\cdot CH_2CH_2OH$, and $CH_2CMe_2OH.^2$ These results have led us to investigate the possibility that aliphatic free radicals would react with a copper peptide complex *via* a similar mechanism. Such reactions are of special interest as copper ions sensitize radiation damage under oxidizing conditions, though it is difficult to believe that $\cdot OH$ radicals will react directly with the copper ions and not with the organic compounds present in biological media.

Nitrous oxide-saturated solutions containing 1––5 imes10⁻⁴ м copper(II) sulphate triglycine complex, Cu^{II} (GGG)⁻ $(GGGH_3 = NH_2CH_2CONHCH_2CONHCH_2CO_2H)$ in the pH range 6-10.2, maintained using 0.01 M sodium phosphate or sodium borate, and 0.01 M NaBr, 1.0 M Me₃COH, or 1 м MeCO₂Na were irradiated by a 4-40 ns pulse of 15 MeV electrons from the linear accelerator at (In all solutions the concentration ratio Argonne. $[GGGH_3]/[CuSO_4] = 1.1$ was maintained.) Under these conditions 6×10^{-6} — 6×10^{-5} M of the free radicals $\mathrm{Br_2}$ -,3 •CH₂CMe₂OH,⁴ and •CH₂CO₂⁻⁴ were formed in the solutions containing NaBr, Me_aCOH, and MeCO₂Na respectively. (In all these solutions hydrogen atoms were also formed with a yield of ca. 10% of the total free radical yield.⁵) The formation of relatively long lived unstable intermediates with absorption bands in the near u.v. was observed

FIGURE. Absorption spectra 180 μs after a 3 \times 10⁴ rad pulse into a 5 cm cell as observed using a streak camera. Arbitrary absorbance scale. Solution composition: (A) $2\cdot5\times10^{-4}$ M Cu^{II}(GGG)⁻, pH 7·3, 1×10^{-2} M NaBr, N₂O saturated; (B) 5×10^{-4} M Cu^{II}(GGG)⁻, pH 7·3, $1\cdot0$ M Me₃COH, N₂O saturated.

under these conditions. The Figure shows the absorption spectra⁶ observed in the NaBr and Me₃COH containing solutions. In the former the transient has λ_{max} 385 \pm 5 nm (ϵ_{max} 4200 \pm 600 l mol⁻¹ cm⁻¹). This spectrum is attributed to Cu¹¹¹(GGG)² formed in reaction (2). After

$$Br_{2} - + Cu^{11}(GGG) - \longrightarrow Cu^{111}(GGG) + 2Br^{-} \qquad (2)$$

$$k_{2} = (1.6 \pm 0.2) \times 10^{8} \, \mathrm{l \ mol^{-1} \ s^{-1}}$$

this reaction a further reaction with $k \ ca. \ 10^3 \ s^{-1}$ occurred. This reaction caused a slight $(ca. \ 10\%)$ decrease in the absorbance, and could therefore not be studied in detail.[‡] The Cu^{III}(GGG) complex thus formed decomposes slowly in a first-order reaction the rate of which increases with pH: $k = ca. \ 0.02, \ ca. \ 0.08, \ 0.25 \pm \ 0.05, \ 3.0 \pm \ 0.5, \ and \ 10 \pm 1$ at pH 6.2, 7.3, 7.8, 9.0, and 10.0 respectively, in accord with the reported properties of Cu^{III}(peptide) complexes.¹

The transient formed in the solutions containing Me₃COH (λ_{max} 320 nm; ϵ_{max} 5000 \pm 700 l mol⁻¹ cm⁻¹) was identified as compound (1) formed in reaction (3). The transient (1) is clearly different from Cu¹¹¹(GGG) as can be deduced

$$\begin{array}{ccc} \mathrm{Cu}^{\mathrm{II}}(\mathrm{GGG})^{-} + \cdot \mathrm{CH}_{2}\mathrm{CMe}_{2}\mathrm{OH} & \longrightarrow \\ & \mathrm{Cu}^{\mathrm{III}}(\mathrm{GGG}) - \mathrm{CH}_{2}\mathrm{CMe}_{2}\mathrm{OH}^{-} & (3) \\ & & (1) \end{array}$$

$$k_3 = (2.6 \pm 0.4) \times 10^7 \,\mathrm{l \ mol^{-1} \ s^{-1}}$$

from their respective spectra (Figure) and from the differences in their rates of decomposition (see later). It is also not Cu¹(GGG), as the yield of (1) in He-saturated solutions, where only HO• is effective in producing the aliphatic radical, is only *ca*. 40% of that observed in N₂O-saturated solutions where both the primary radiolysis products, e_{aq}^{-} , as well as HO•, do so (the former *via* N₂O scavenging, N₂O + e_{aq}^{-} + H⁺ \rightarrow N₂ + HO•). The rate of decomposition of (1) in the He saturated solutions is slightly higher than in the N₂O saturated solutions. The mechanism of decomposition of (1) is believed to be as shown in reaction (4), by analogy with the mechanism of decomposition of

$$Cu^{111}(GGG)-CH_2CMe_2OH^- \xrightarrow{H_2O} Cu^{1}(GGG) + HOCH_2CMe_2OH$$
(4)

 $(H_2O)_n Cu^{III}$ -RH.² $k_4 = 0.75 \pm 0.10$, 1.5 ± 0.2 , 2.3 ± 0.3 , and 2.5 ± 3 at pH 7.3, 7.8, 9.0, and 10.2 respectively. The product of reaction (4) cannot be $Cu^{III}(GGG)$ as the rate of decomposition of the latter at pH 7.3 and 7.8 is considerably lower than k_4 . At 380 nm the absorption coefficient of $Cu^{III}(GGG)$ is considerably larger than that of $Cu^{III}(GGG)$ -CH₂CMe₂OH⁻; reaction (4) causes a decrease and not an increase in absorption at 380 nm.

In solutions containing 1 M MeCO₂Na instead of Me₃COH similar results were observed: $k[Cu^{II}(GGG) + \cdot CH_2CO_2^-] = (1.6 \pm 0.2) \times 10^7 l \text{ mol}^{-1} \text{ s}^{-1}$. The absorption band of the transient in these solutions is broader, with $\lambda_{max} < 350$ nm. The decomposition of the transient identified as Cu^{III}(GGG)-CH_2CO_2^- consists of two consecutive steps; the ratio of the relative contribution of the first to that of the second reaction decreases with pH, from 50% at pH 7.8 to 20% at pH 10.2. The rate constant of the first

[‡] One possibility is that first Cu^{III}(GGG)Br is formed and that the reaction observed is the loss of Br-.

step is 7.6 s^{-1} at pH 7.8 and 3.5 s^{-1} at pH 10.2 while that of the second step is 0.89 and 0.06 s^{-1} at these pH values. The exact nature of these two reactions is not clear; however, the decomposition of $(Cu^{III}-CH_2CO^{-}_2)_{ag}$ also consists of two steps.² It is also of interest that the rate of decomposition of Cu^{III}(GGG)-CH₂CO⁻₂ decreases with increasing pH while that of Cu¹¹¹(GGG) and Cu¹¹¹(GGG)-CH₂CMe₂OH⁻ increases.

The results obtained in this study indicate that copper proteins might act as scavengers of 'non-reducing' aliphatic

The experimental assistance of P. D. Walsh and R. M. Clarke is gratefully acknowledged.

(Received, 4th May 1979; Com. 478.)

¹ D. L. Margerum, K. L. Chellappa, F. P. Bossu, and G. L. Burce, J. Amer. Chem. Soc., 1975, 97, 6894; F. P. Bossu, K. L. Chellappa, and D. L. Margerum, *ibid.*, 1977, 99, 2195.

- ^a M. Freiberg and D. Meyerstein, J.C.S. Chem. Comm., 1977, 127 and results to be published.
 ^a M. S. Matheson, W. A. Mulac, J. L. Weeks, and J. Rabani, J. Phys. Chem., 1966, 70, 2092.
 ⁴ M. Anbar, M. Bambenek, and A. B. Ross, NSRDS, National Bureau of Standards, 1973, Vol. 43.
- ⁶ M. S. Matheson and L. M. Dorfman, 'Pulse Radiolysis,' M.I.T. Press, Cambridge, Massachusetts, 1969.
- ⁶S. Gordon, W. A. Mulac, K. H. Shmidt, R. K. Sjoblem, and J. C. Sullivan, Inorg. Chem., 1978, 17, 294.